Here is the second post on setting up the Seiberg-Witten equations on a 4-manifold, based on our learning seminar at UT Austin. The first post is here.

**Clifford Algebras and Structures**

For a vector space V with inner product g, its Clifford Algebra is defined as the tensor algebra of V modded out by all relations generated by setting ,

For a vector bundle , any map satisfying for all (equivalently satisfying for all v) extends to a representation

Such a map is called a Clifford structure.

There are two reasons we are interested in Clifford algebras and Clifford structures for Seiberg-Witten theory. The first is their relation to Spin and Spinc structures. The second is their relation to Dirac operators. In this post we will focus on their relation to Spin and Spinc structures, and discuss Dirac operators next.

**Clifford algebras and Spin**

Let denote the Clifford algebra of with its standard inner product. Let denote the standard orthonormal basis for . Consider the multiplicative subgroup of generated by unit vectors of . This is called .

There is a natural grading on induced by a bijection identifying . The integer grading on the exterior power reduces to a grading (even/odd) on the Clifford algebra. This yields a splitting . Define to be the intersection of with the even summand .

Before, we defined to be the universal double cover of . We can show this new definition of Spin agrees with the old definition, by explicitly constructing a double cover map from this subset of to .

There is an action of on given by signed conjugation (using the multiplicative structure of the Clifford algebra). If is a unit vector (i.e. a generator of ) then for any

Here we have used the fact that for unit vectors so , and the relation in the Clifford algebra. This can be interpreted geometrically: the action is the reflection of x over the hyperplane orthogonal to v.

The group of orthogonal transformations is generated by reflections over hyperplanes, so we have a representation called the twisted adjoint representation:

defined by where (extend linearly). Restricting this to this is just usual conjugation, which corresponds to an even number of reflections so the image lies in :

This map is a surjective group homomorphism, and by studying the elements of which lie in the center of , we see that the kernel of is two elements . Because these are nice smooth compact Lie groups, this implies that is a covering map. To check it is not the trivial double cover, we can find a path in between -1 and 1 given by

for [observe this path is a product of two unit vectors at each t and is thus in ].

Therefore this definition of agrees with the previous one.

**The spinor representation**

We have already seen that so and naturally admit two complex rank two representations coming from the projections onto the two factors of . However, it is useful to understand these representations from the Clifford algebra perspective so that the representations carry the additional information of a Clifford structure. In fact, there is a complex representation of the entire (complexified) Clifford algebra which splits into a direct sum of two complex rank two representations, which behave nicely with respect to the grading on the Clifford algebra. More specifically:

**Theorem:** There is a complex vector space with , and an -linear isomorphism

such that and .

To prove this, we have to define , , and the map c, and then verify that c is an algebra isomorphism satisfying the specified properties. There are a lot of things to check so I will define everything, and say a few things about how the map c works which hopefully make it more believable that c is an algebra isomorphism.

Let with standard coordinates and standard almost complex structure J. This almost complex structure gives rise to a splitting of , where is the i-eigenspace of J and is the -i-eigenspace of J. We have orthonormal bases for these pieces given by:

Define , and its splitting by and .

Now we need to define with the properties specified in the theorem. We will define c on elements of and then extend this to a map on the Clifford algebra by setting and extending complex linearly. To specify c on , it suffices to say what c does to vectors in and .

For , is the endomorphism of obtained by wedging with v:

For is contraction with :

One needs to check that this respects the Clifford algebra structure, and is an isomorphism. Initially, this may look wrong because for example when

and it seems like we should have . However, the algebra structure we want to preserve is complex linear on and has the Clifford structure only on the piece. Therefore, for example when ,

For basis elements, the map c is a sum of the exterior and interior products. To compute for example, we split this into the and parts, so

If you want to be slightly more convinced without completing the proof that for real elements of it is fairly easy at this point to check that at least on the part of (since any map that starts with contraction vanishes and for a complex number, and ).

We get the last property in the theorem easily from the definition of c. For , either raises or lowers by 1, wedge power of an element of . Therefore sends to and vice versa. Extending this over the entire Clifford algebra, we see that the endomorphisms in preserve and (since they switch between an even number of times) and sends to .

Note: We can rewrite the isomorphism as a map

.

This will be useful when we use this representation to form associated bundles and consider sections of those bundles and maps between the spaces of sections.

This theorem generalizes for , producing a complex vector space which splits where , whose endomorphisms are isomorphic to , where preserves the splitting and switches the components. In the odd dimensional case, the situation is slightly different, but reduces to the even case by showing that . For the purposes of Seiberg-Witten Floer homology, it will be useful to know which implies .

**Spinor bundles**

Now that we have this representation of the complexification of the Clifford algebra, we can restrict to get a representation of Spin. Because , and preserves the splitting , we get two representations

Note the image of lands in automorphisms instead of only endomorphisms because elements of are invertible in . These two representations correspond to the same ones we obtain by identifying and projecting onto one component.

We can extend these maps to by defining

by for , .

Note this is well defined since .

Given a Spin or Spinc structure on a manifold, these representations give rise to associated bundles . These bundles show up in the set-up for the Seiberg-Witten configuration space, which I will get to in another post.