Connections on vector bundles and principal bundles

A connection on a vector bundle $E \rightarrow M$ is a linear map

$$
\nabla: \Gamma(E) \rightarrow \Gamma\left(T^{*} M \otimes E\right)
$$

satisfying a Leibniz rule:

$$
\nabla_{X}(f s)=X(f) s+f \nabla_{X} s
$$

for all $f \in C^{\infty}(M)$ and vector fields $X \in \Gamma(T M)$. (Here the notation $X(f)$ means $d f(X)$).
What do connections look like in the simplest case: a trivial bundle $E=M \times V \rightarrow M$?
By choosing a trivialization $\left(E_{1}, \cdots, E_{n}\right)$ for $M \times V$ (e.g. choose a basis for V and let $E_{1}(x)=$ $\left.x \times e_{1} \in x \times V \subset M \times V\right)$, we can write a section $s: M \rightarrow M \times V$ as $s(x)=\left(s_{1}(x), \cdots, s_{n}(x)\right)$ where $s_{i} \in C^{\infty}(M)$. A section $\sigma: M \rightarrow T^{*} M \otimes(M \times V)$ also splits as $\sigma=\left(\sigma_{1}(x), \cdots, \sigma_{n}(x)\right)$, but here the σ_{i} are 1-forms on M. Let ∇ be a connection on $M \times V \rightarrow M$, and $s=\left(s_{1}, \cdots, s_{n}\right)$ a section. Then $s=s_{1} E_{1}+\cdots+s_{n} E_{n}$ so by linearity and the Leibniz rule

$$
\nabla_{X} s=\sum_{i=1}^{n} X\left(s_{i}\right) E_{i}+s_{i} \nabla_{X} E_{i}=d s(X)+A s
$$

where A is the matrix of 1 -forms whose ith column is given by $\nabla_{X} E_{i}$. Therefore we can write $\nabla=d+A$. Conversely one can check that for any $n \times n$ matrix, A, whose entries are 1 -forms, $d+A$ satisfies the requirements to be a connection on $M \times V^{n}$.
For a connection ∇ on a general vector bundle, described by $\left(\left\{U_{\alpha}\right\},\left\{g_{\beta \alpha}\right\}\right)$, the restriction $\left.\nabla\right|_{U_{\alpha}}$ is a connection on the trivial bundle $U_{\alpha} \times V$ so it can be written as $d+A_{\alpha}$. However, generally the connection cannot be written globally in this way. If we consider the restriction of a section $s: M \rightarrow E$ to $U_{\beta} \cap U_{\alpha}$, the transition functions $g_{\beta \alpha}$ indicate how the connections on the trivial bundles $U_{\alpha} \times V$ and $U_{\beta} \times V$ relate:

$$
\begin{gathered}
g_{\beta \alpha}\left(d s_{\alpha}+A_{\alpha} s_{\alpha}\right)=(\nabla s)_{\beta}=d s_{\beta}+A_{\beta} s_{\beta}=d\left(g_{\beta \alpha} s_{\alpha}\right)+A_{\beta} g_{\beta \alpha} s_{\alpha} \\
d s_{\alpha}+A_{\alpha} s_{\alpha}=g_{\beta \alpha}^{-1}\left(g_{\beta \alpha} d s_{\alpha}+\left(d g_{\beta \alpha}\right) s_{\alpha}+A_{\beta} g_{\beta \alpha} s_{\alpha}\right)=d s_{\alpha}+\left(g_{\beta \alpha}^{-1} d g_{\beta \alpha}+g_{\beta \alpha}^{-1} A_{\beta} g_{\beta \alpha}\right) s_{\alpha}
\end{gathered}
$$

So the relation is:

$$
A_{\alpha}=g_{\beta \alpha}^{-1} d g_{\beta \alpha}+g_{\beta \alpha}^{-1} A_{\beta} g_{\beta \alpha}(*)
$$

Conversely, every family $\left\{A_{\alpha}\right\}$ satisfying this condition glues together via a partition of unity subordinate to $\left\{U_{\alpha}\right\}$ to form a global connection on the vector bundle.

We can use this local method of defining connections to extend this to a definition of connections on principal bundles. For this condition on the A_{α} to make sense on a principal bundle, we first need to define some natural objects associated to the Lie group G.
For a Lie group G, let \mathfrak{g} be its Lie algebra which is canonically identified with the tangent space to G at 1_{G}.
There is a naturally defined adjoint action of G given by $A d_{g}: \mathfrak{g} \rightarrow \mathfrak{g}$ is the derivative at 1_{G} of $\Psi_{g}: G \rightarrow G$ defined by $\Psi_{g}(h)=g h g^{-1}$.
There is also a natural \mathfrak{g}-valued 1 -form, ϕ called the Maurer-Cartan form, determined by
(1) $\phi\left(1_{G}\right)(X)=X \in T_{1_{G}}(X)=\mathfrak{g}$ and
(2) ϕ is left-invariant

For a collection $\left\{A_{\alpha}\right\}$ where $A_{\alpha} \in \Omega^{1}\left(U_{\alpha}\right) \otimes \mathfrak{g}$, we can form a connection on the principal G-bundle determined by $\left(\left\{U_{\alpha}\right\},\left\{g_{\beta \alpha}\right\}\right)$ if the relation $\left(^{*}\right)$ is satisfied:

$$
A_{\alpha}=g_{\beta \alpha}^{-1} d g_{\beta \alpha}+g_{\beta \alpha}^{-1} A_{\beta} g_{\beta \alpha}(*)
$$

where $g_{\beta \alpha}^{-1} d g_{\beta \alpha}$ is the pull-back under $g_{\beta \alpha}$ of the Maurer-Cartan form, and $g_{\beta \alpha}^{-1} A_{\beta} g_{\beta \alpha}$ is the adjoint action of $g_{\beta \alpha}$ acting on A_{α}.

Given a principal G-bundle, and a representation $\rho: G \rightarrow G L(V)$, there is an associated vector bundle to the principal G-bundle $P: P \times{ }_{\rho} V$ defined by gluing cycles $\left(\left\{U_{\alpha}\right\},\left\{\rho \circ g_{\beta \alpha}\right\}\right)$. A connection on P defined by \mathfrak{g}-valued 1-forms, $\left\{A_{\alpha}\right\}$ induces a connection on $P \times_{\rho} V$ defined by $\left\{\rho_{*}\left(A_{\alpha}\right)\right\}$ where

$$
\rho_{*}: T_{1} G=\mathfrak{g} \rightarrow T_{I}(G L(V))=\operatorname{End}(V)
$$

Curvature of a connection

Given a connection ∇ on a vector bundle $E \rightarrow M$, we can define its curvature F_{∇} by

$$
F_{\nabla}(X, Y) u=\nabla_{X} \nabla_{Y} s-\nabla_{X} \nabla_{Y} s-\nabla_{[X, Y]} s
$$

for $X, Y \in \Gamma(T M), s \in \Gamma(E)$.
The Leibniz rule for connections ensures that $F_{\nabla}(X, Y)(f s)=f F_{\nabla}(X, Y) s$, (and of course F_{∇} is linear over $C^{\infty}(M)$ in the other two slots because $\left.\nabla_{f X} s=f \nabla_{X} s\right)$. Therefore, $F_{\nabla} \in \Omega^{2}(E n d(E))$ (i.e. $F_{\nabla}(X, Y) \in \operatorname{End}(E)$).

We can formulate the curvature terms of the gluing cocycles and the local data of the connection $\left\{A_{\alpha}\right\}$. First consider the trivial vector bundle $E=M \times V \rightarrow M$. Then $\nabla=d+A$ where $A \in \Omega^{1}(\operatorname{End}(E))$, i.e. a square matrix of 1-forms. We can calculate the curvature:

$$
\begin{aligned}
F_{\nabla}(X, Y) s= & \nabla_{X} \nabla_{Y} s-\nabla_{Y} \nabla_{X} s-\nabla_{[X, Y]} s \\
= & \nabla_{X}(d s(Y)+A(Y) s)-\nabla_{Y}(d s(X)+A(X) s)-(d s([X, Y])+A([X, Y]) s) \\
= & d(d s(Y))(X)+d(A(Y) s)(X)+A(X) d s(Y)+A(X) A(Y) s \\
& -d(d s(X))(Y)-d(A(X) s)(Y)-A(Y) d s(X)-A(Y) A(X) s \\
& -d s([X, Y])-A([X, Y]) s \\
= & d(A(Y))(X) s+A(Y) d s(X)+A(X) d s(Y)-d(A(X))(Y) s-A(X) d s(Y)-A(Y) d s(X) \\
& -A([X, Y]) s+A \wedge A(X, Y) s \\
= & d(A(Y))(X) s-d(A(X))(Y) s-A([X, Y]) s+A \wedge A(X, Y) s \\
= & d A(X, Y) s+A \wedge A(X, Y) s
\end{aligned}
$$

We conclude that $F_{\nabla}=d A+A \wedge A$ where $d A$ indicates the nxn matrix of 2-forms which are the exterior derivatives of the entries of A, and $A \wedge A(X, Y)=A(X) A(Y)-A(Y) A(X)$ is an endomorphism of E.

In the case of a general bundle, ∇ restricts to $d+A_{\alpha}$ on the charts U_{α}, so on each chart $F_{\nabla}=$ $d A_{\alpha}+A_{\alpha} \wedge A_{\alpha}$. We have the relation $\left(^{*}\right)$ on the overlaps between the charts, which can be used to show $F_{\nabla}=d A_{\alpha}+A_{\alpha} \wedge A_{\alpha}$ is the same on overlaps regardless of which chart we are working in. Therefore, by piecing together the local data, we obtain a global endomorphism valued 2-form F_{∇} from the local data of the bundle and connection.

When the vector bundle E has a G-structure, namely it is the associated bundle to a principal G-bundle, the curvature is a 2 -form valued in $\operatorname{Ad}(E)$. [The adjoint action: $A d: G \rightarrow A u t(\mathfrak{g})$, is defined by sending $g \in G$ to $A d_{g}: \mathfrak{g} \rightarrow \mathfrak{g}$.]

