
Connections on vector bundles and principal bundles
A connection on a vector bundle E →M is a linear map

∇ : Γ(E)→ Γ(T ∗M ⊗ E)

satisfying a Leibniz rule:
∇X(fs) = X(f)s+ f∇Xs

for all f ∈ C∞(M) and vector fields X ∈ Γ(TM). (Here the notation X(f) means df(X)).

What do connections look like in the simplest case: a trivial bundle E = M × V →M?
By choosing a trivialization (E1, · · · , En) for M × V (e.g. choose a basis for V and let E1(x) =
x×e1 ∈ x×V ⊂M ×V ), we can write a section s : M →M ×V as s(x) = (s1(x), · · · , sn(x)) where
si ∈ C∞(M). A section σ : M → T ∗M ⊗ (M × V ) also splits as σ = (σ1(x), · · · , σn(x)), but here
the σi are 1-forms on M . Let ∇ be a connection on M × V → M , and s = (s1, · · · , sn) a section.
Then s = s1E1 + · · ·+ snEn so by linearity and the Leibniz rule

∇Xs =

n∑
i=1

X(si)Ei + si∇XEi = ds(X) +As

where A is the matrix of 1-forms whose ith column is given by ∇XEi. Therefore we can write
∇ = d+A. Conversely one can check that for any n×n matrix, A, whose entries are 1-forms, d+A
satisfies the requirements to be a connection on M × V n.
For a connection ∇ on a general vector bundle, described by ({Uα}, {gβα}), the restriction ∇|Uα
is a connection on the trivial bundle Uα × V so it can be written as d + Aα. However, generally
the connection cannot be written globally in this way. If we consider the restriction of a section
s : M → E to Uβ ∩ Uα, the transition functions gβα indicate how the connections on the trivial
bundles Uα × V and Uβ × V relate:

gβα(dsα +Aαsα) = (∇s)β = dsβ +Aβsβ = d(gβαsα) +Aβgβαsα

dsα +Aαsα = g−1βα(gβαdsα + (dgβα)sα +Aβgβαsα) = dsα + (g−1βαdgβα + g−1βαAβgβα)sα

So the relation is:
Aα = g−1βαdgβα + g−1βαAβgβα(∗)

Conversely, every family {Aα} satisfying this condition glues together via a partition of unity sub-
ordinate to {Uα} to form a global connection on the vector bundle.

We can use this local method of defining connections to extend this to a definition of connections on
principal bundles. For this condition on the Aα to make sense on a principal bundle, we first need
to define some natural objects associated to the Lie group G.
For a Lie group G, let g be its Lie algebra which is canonically identified with the tangent space to
G at 1G.
There is a naturally defined adjoint action of G given by Adg : g → g is the derivative at 1G of
Ψg : G→ G defined by Ψg(h) = ghg−1.
There is also a natural g-valued 1-form, φ called the Maurer-Cartan form, determined by
(1) φ(1G)(X) = X ∈ T1G(X) = g and
(2) φ is left-invariant
For a collection {Aα} where Aα ∈ Ω1(Uα)⊗ g, we can form a connection on the principal G-bundle
determined by ({Uα}, {gβα}) if the relation (*) is satisfied:

Aα = g−1βαdgβα + g−1βαAβgβα(∗)

where g−1βαdgβα is the pull-back under gβα of the Maurer-Cartan form, and g−1βαAβgβα is the adjoint
action of gβα acting on Aα.
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Given a principal G-bundle, and a representation ρ : G → GL(V ), there is an associated vector
bundle to the principal G-bundle P : P ×ρ V defined by gluing cycles ({Uα}, {ρ ◦ gβα}). A connec-
tion on P defined by g-valued 1-forms, {Aα} induces a connection on P ×ρ V defined by {ρ∗(Aα)}
where

ρ∗ : T1G = g→ TI(GL(V )) = End(V ).

Curvature of a connection
Given a connection ∇ on a vector bundle E →M , we can define its curvature F∇ by

F∇(X,Y )u = ∇X∇Y s−∇X∇Y s−∇[X,Y ]s

for X,Y ∈ Γ(TM), s ∈ Γ(E).
The Leibniz rule for connections ensures that F∇(X,Y )(fs) = fF∇(X,Y )s, (and of course F∇ is
linear over C∞(M) in the other two slots because ∇fXs = f∇Xs). Therefore, F∇ ∈ Ω2(End(E))
(i.e. F∇(X,Y ) ∈ End(E)).
We can formulate the curvature terms of the gluing cocycles and the local data of the connection
{Aα}. First consider the trivial vector bundle E = M × V → M . Then ∇ = d + A where
A ∈ Ω1(End(E)), i.e. a square matrix of 1-forms. We can calculate the curvature:

F∇(X,Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

= ∇X(ds(Y ) +A(Y )s)−∇Y (ds(X) +A(X)s)− (ds([X,Y ]) +A([X,Y ])s)

= d(ds(Y ))(X) + d(A(Y )s)(X) +A(X)ds(Y ) +A(X)A(Y )s

−d(ds(X))(Y )− d(A(X)s)(Y )−A(Y )ds(X)−A(Y )A(X)s

−ds([X,Y ])−A([X,Y ])s

= d(A(Y ))(X)s+A(Y )ds(X) +A(X)ds(Y )− d(A(X))(Y )s−A(X)ds(Y )−A(Y )ds(X)

−A([X,Y ])s+A ∧A(X,Y )s

= d(A(Y ))(X)s− d(A(X))(Y )s−A([X,Y ])s+A ∧A(X,Y )s

= dA(X,Y )s+A ∧A(X,Y )s

We conclude that F∇ = dA + A ∧ A where dA indicates the nxn matrix of 2-forms which are the
exterior derivatives of the entries of A, and A∧A(X,Y ) = A(X)A(Y )−A(Y )A(X) is an endomor-
phism of E.

In the case of a general bundle, ∇ restricts to d + Aα on the charts Uα, so on each chart F∇ =
dAα + Aα ∧ Aα. We have the relation (*) on the overlaps between the charts, which can be used
to show F∇ = dAα +Aα ∧Aα is the same on overlaps regardless of which chart we are working in.
Therefore, by piecing together the local data, we obtain a global endomorphism valued 2-form F∇
from the local data of the bundle and connection.

When the vector bundle E has a G-structure, namely it is the associated bundle to a principal
G-bundle, the curvature is a 2-form valued in Ad(E). [The adjoint action: Ad : G → Aut(g), is
defined by sending g ∈ G to Adg : g→ g.]
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