Connections on vector bundles and principal bundles
A connection on a vector bundle £ — M is a linear map

V:T(E) - T(T*M @ E)

satisfying a Leibniz rule:
Vx(fs) = X(f)s + fVxs
for all f € C*°(M) and vector fields X € I'(TM). (Here the notation X (f) means df(X)).

What do connections look like in the simplest case: a trivial bundle E = M x V — M?
By choosing a trivialization (Eq,---, FE,) for M x V (e.g. choose a basis for V and let E;(x) =

xxel €xxV CMxV), wecan write a section s : M — M xV as s(z) = (s1(x),- -, sp(x)) where
s; € C°(M). A section o : M — T*M @ (M x V) also splits as ¢ = (o1(z), -+ ,0n(x)), but here
the o; are 1-forms on M. Let V be a connection on M x V — M, and s = (s1,--- , 8,) a section.

Then s = s1F1 + - - - + sy F, so by linearity and the Leibniz rule
Vxs =Y X(s;)Ei + s VxE; =ds(X) + As
i=1

where A is the matrix of 1-forms whose ith column is given by VxFE;. Therefore we can write
V = d+ A. Conversely one can check that for any n x n matrix, A, whose entries are 1-forms, d+ A
satisfies the requirements to be a connection on M x V™.

For a connection V on a general vector bundle, described by ({U,},{9sa}), the restriction V|y,
is a connection on the trivial bundle U, x V so it can be written as d + A,. However, generally
the connection cannot be written globally in this way. If we consider the restriction of a section
s : M — E to Ug NU,, the transition functions gg, indicate how the connections on the trivial
bundles U, x V and Ug x V relate:

9pa(dsa + Aasa) = (Vs)g = dsg + Apspg = d(gpasa) + Apgpasa

dsa + Aasa = G50 (9padsa + (dgsa)sa + Apgpasa) = dsa + (954950 + 954 Asgsa)Sa

So the relation is:
Aa = g;;dgﬁa + gE;A,Bg,Ba(*)

Conversely, every family {A4,} satisfying this condition glues together via a partition of unity sub-
ordinate to {U,} to form a global connection on the vector bundle.

We can use this local method of defining connections to extend this to a definition of connections on
principal bundles. For this condition on the A, to make sense on a principal bundle, we first need
to define some natural objects associated to the Lie group G.

For a Lie group G, let g be its Lie algebra which is canonically identified with the tangent space to
G at 1g.

There is a naturally defined adjoint action of G given by Ad, : g — g is the derivative at 1¢ of
VU, : G — G defined by ¥, (h) = ghg™'.

There is also a natural g-valued 1-form, ¢ called the Maurer-Cartan form, determined by

(1) 6(16)(X) = X € T1(X) = g and

(2) ¢ is left-invariant

For a collection {A,} where 4, € Q'(U,) ® g, we can form a connection on the principal G-bundle
determined by ({Ua}, {9sa}) if the relation (*) is satisfied:

Aa = gﬁ_o];dgﬂa + gﬁ_o];A,@gﬁa(*)

where g/g;dg[;a is the pull-back under gg, of the Maurer-Cartan form, and ggiAggga is the adjoint
action of gg, acting on A,.



Given a principal G-bundle, and a representation p : G — GL(V), there is an associated vector
bundle to the principal G-bundle P: P x, V defined by gluing cycles ({Ua},{p © gga}). A connec-
tion on P defined by g-valued 1-forms, {A,} induces a connection on P x, V defined by {p.(Aa)}
where

p TG =g — Ti(GL(V)) = End(V).

Curvature of a connection
Given a connection V on a vector bundle E — M, we can define its curvature Fy by

Fv(X, Y)u =VxVys—-VxVys— V[X,Y]S

for X, Y e I'(TM), s € T(E).

The Leibniz rule for connections ensures that Fy(X,Y)(fs) = fFv(X,Y)s, (and of course Fy is
linear over C°°(M) in the other two slots because Vyxs = fVxs). Therefore, Fy € Q*(End(E))
(iie. Fv(X,Y) € End(E)).

We can formulate the curvature terms of the gluing cocycles and the local data of the connection
{A,}. First consider the trivial vector bundle £ = M x V — M. Then V = d + A where
A € QY (End(E)), i.e. a square matrix of 1-forms. We can calculate the curvature:

Fy(X,Y)s = VxVys—VyVxs—Vxy)s

= Vx(ds(Y)+ A(Y)s) — Vy(ds(X) + A(X)s) — (ds([X,Y]) + A([X,Y])s)

= d(ds(Y))(X)+d(AY)s)(X) + A(X)ds(Y) + A(X)A(Y)s
—d(ds(X))(Y) = d(A(X)s)(Y) — A(Y)ds(X)—A(Y)A(X)s
—ds([X,Y]) — A([X,Y])s

= d(AY))(X)s+ A )ds(X) + A(X)ds(Y) — d(A(X))(Y)s — A(X)ds(Y) — A(Y)ds(X)
—A(X,Y])s+ ANA(X,Y)s

= dAY)(X)s —d(AX)(Y)s — A([X,Y]))s + ANA(X,Y)s
dAX,Y)s+ ANA(X,)Y)s

We conclude that Fy = dA + A AN A where dA indicates the nxn matrix of 2-forms which are the
exterior derivatives of the entries of A, and AN A(X,Y) = A(X)A(Y) — A(Y)A(X) is an endomor-
phism of E.

In the case of a general bundle, V restricts to d + A, on the charts U,, so on each chart Fy =
dAs + Aq N Ay. We have the relation (*) on the overlaps between the charts, which can be used
to show Fy = dA, + Ao A A, is the same on overlaps regardless of which chart we are working in.
Therefore, by piecing together the local data, we obtain a global endomorphism valued 2-form Fy
from the local data of the bundle and connection.

When the vector bundle F has a G-structure, namely it is the associated bundle to a principal
G-bundle, the curvature is a 2-form valued in Ad(E). [The adjoint action: Ad : G — Aut(g), is
defined by sending g € G to Ad, : g — g.]



